Abstract
Monolithic three-dimensional (M3D) integration has the potential to achieve significantly higher device density compared to 3D integration based on through-silicon vias. We analyze defects that arise due to voids created during the wafer-bonding step in M3D integration. We quantify the impact of these defects on the threshold voltage of a top-layer transistor in an M3D integrated circuit. We also show that wafer-bonding defects can lead to a change in the resistance of inter-layer vias (ILVs), and in some cases, lead to an open in an ILV or a short between two ILVs. We then analyze the impact of these defects on path delays. Our results show that the timing characteristics of an M3D IC can be significantly altered due to the presence of wafer-bonding defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.