Abstract

This study primarily investigates the enhanced heat transfer of V-shaped ribs with?in an internal cross-flow channel and their impact on external film cooling per?formance. The aim is to assess the advantages of V-shaped ribs in the cooling of gas turbine blades. The research specifically discusses the internal heat transfer efficiency of smooth channels, channels with V-shaped ribs, and channels with intermittently placed V-shaped ribs at a blowing ratio, M, of 0.5 and three different Reynolds numbers. The results indicate that the vortices generated by the coolant passing through the positive V-shaped ribs and intermittently placed V-shaped ribs effectively impinge on the upper and lower surfaces, thereby enhancing heat trans?fer performance. Regarding film cooling, under low Reynolds number conditions, the film cooling efficiency of the positive V-shaped ribs is 9-20% higher than that of the smooth channel. Under high Reynolds number conditions, the film cooling efficiency of the negative V-shaped ribs significantly increases, reaching 29-120%. The study demonstrates that rib shape and inlet Reynolds number have a signifi?cant impact on the swirl intensity of the coolant in the film cooling holes, and fluid with a certain swirl intensity exhibits better film cooling efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.