Abstract

The historically active Nemrut Volcano (2,948 m asl) (Eastern Anatolia), rising close to the western shore of huge alkaline Lake Van, has been the source of intense Plinian eruptions for >530,000 years (drilled lake sediments). About 40 widespread, newly recognized trachytic and less common rhyolitic fallout tephras and ca. 12 interbedded ignimbrites, sourced in Nemrut Volcano, are documented in stratigraphic traverses throughout an area of >6,000 km2 mostly west of Lake Van. Phenocrysts in the moderately peralkaline trachytes and rarer large-volume comenditic rhyolites comprise anorthoclase, hedenbergite-augite, fayalite and, especially in trachytic units, augite, minor aenigmatite, apatite and quartz, and rare chevkinite and zircon. Dacitic to rhyolitic tephras from nearby calcalkalic Suphan Volcano (4,058 m asl), locally interbedded with Nemrut tephras, are characterized by disequilibrium phenocryst assemblages (biotite, augitic clinopyroxene and hypersthene, minor olivine, common crystal clots and/or, in some deposits, amphibole). The magma volume (DRE) of the largest Nemrut tephra sheet (AP-1) described in detail may exceed 30 km3. Extreme facies and systematic compositional changes are documented in the ca. 30 ka Nemrut Formation (NF) deposits formed from one large and complex eruption (thick rhyolitic fallout overlain by ignimbrite, welded agglutinate, overbank surge deposits, and final more mafic fallout deposits). Common evidence of magma mixing in Nemrut ignimbrites reflects eruption from compositionally zoned magma reservoirs. Several young Cekmece Formation trachytes overlying ca. 30 ka old NF deposits and the late trachytes of the NF deposits show compositional affinities to tephra from Suphan Volcano possibly due to temporary influx of Suphan magmas into the Nemrut system following the evacuation of >10 km3 magma (DRE) during the caldera-forming NF eruption. Axes of large fallout fans are dominantly SW–NE but W–E in the younger sheets resembling the direction of the present dominant wind field. Growth of Nemrut volcanic edifice and its peripheral domes since before 0.5 Ma in the hinge area between the Van and Mus tectonic basins is likely to have been the major factor in isolating Lake Van basin thus initiating the origin and subsequent alkaline evolution of the lake. This alkalinity was later significantly controlled by climate forcing. Internal forcing mechanisms (volcanic and geodynamic) may also have contributed to major lake level changes in addition to climate forcing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call