Abstract

The study assessed the impact of volatile fatty acids (VFA) to total alkalinity (TA) ratio (VFA/TA), and percentage volatile solids (VS) reduction of batch and semi-continuous anaerobic co-digestion of palm nut paste waste (PNPW) and anaerobic-digested rumen waste (ADRW) on digester stability and biogas production under the environmental condition of 50 ± 1°C and hydraulic retention time of 21 days for the batch studies and 14 days for semi-continuous co-digestion. The co-digestion ratios were based on percentage digester volume corresponding to 90%:10%, 75%:25% and 50%:50%. During batch and semi-continuous anaerobic co-digestion, VFA/TA of 0.32-1.0 and VS reduction of 53-67% were observed as the stable range at which biogas production was maximum. In terms of semi-continuous anaerobic digestion (AD), except for the 50%:50% ratio where biogas production progressed steadily from the first to fourteenth days, biogas production initially dropped from 180.1 to 171.3 mL between the first and third days of the 90%:10% reaching a maximum of 184 mL on the fourteenth day. Biogas production declined from 198.8 to 187.5 mL on the second day and then increased to 198.8 ± 0.5 mL in the case of the 75%:25% with a significant difference between the treatment ratios at p < 0.05. Therefore, the study can confirm that the 50%:50% ratio (PNPW:ADRW) is a suitable option for managing crude fat-based waste under thermophilic AD due to its potential for rapid start-up and complete biodegradation of active biomass within a 21-day period. This presupposes that residual methane as greenhouse gas will be void in the effluent if disposed of.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call