Abstract

In this research, a summer orographic precipitation process that occurred over the Tian Shan Mountains on 27 July 2019, was investigated, focusing on the impact of vertical wind shear on clouds. Multiple remote sensors were deployed to measure the ambient conditions and the fine structures of clouds and precipitation, including a radiometer, a vertically pointing micro-rain radar (MRR), and a cloud radar on a truck. In addition, a convection-permitting simulation was conducted to investigate the role of vertical wind shear. The results show that (1) according to the MRR measurements, the precipitation was mainly due to a warm rain process and was mostly light to moderate, with no strong convection occurring; (2) the cloud structures observed by the cloud radar were very different above and below the shear level, and the cloud evolution was strongly controlled by the vertical wind shear, and (3) radar observations and model simulations indicated that vertical wind shear had an inhibiting impact on the vertical development of clouds and was responsible for the formation of multi-layer clouds. The analysis highlights the advantages of the use of millimeter radars to measure the fine structures of orographic clouds; thus, they can be powerful tools with which to improve our understanding of the interactions occurring between vertical wind shear and clouds over complex terrain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.