Abstract

BackgroundReduced biventricular pacing (BiVP) is a common phenomenon in cardiac resynchronization therapy (CRT) with impact on CRT-response and patients’ prognosis. Data on treatment strategies for patients with ventricular arrhythmia and BiVP reduction is sparse. We sought to assess the effects of ventricular arrhythmia treatment on BiVP.MethodsIn this retrospective analysis, the data of CRT patients with a reduced BiVP ≤ 97% due to ventricular arrhythmia were analyzed. Catheter ablation or intensified medical therapy was performed to optimize BiVP.ResultsWe included 64 consecutive patients (73 ± 10 years, 89% male, LVEF 30 ± 7%). Of those, 22/64 patients (34%) underwent ablation of premature ventricular contractions (PVC) and 15/64 patients (23%) underwent ventricular tachycardia (VT) ablation while 27/64 patients (42%) received intensified medical treatment. Baseline BiVP was 88.1% ± 10.9%. An overall increase in BiVP percentage points of 8.8% (range − 5 to + 47.6%) at 6-month follow-up was achieved. No changes in left ventricular function were observed but improvement in BiVP led to an improvement in NYHA class in 24/64 patients (38%). PVC ablation led to a significantly better improvement in BiVP [9.9% (range 4 to 22%) vs. 3.2% (range − 5 to + 10.7%); p = < 0.001] and NYHA class (12/22 patients vs. 4/27 patients; p = 0.003) than intensified medical therapy. All patients with VT and reduced BiVP underwent VT ablation with an increase of BiVP of 16.3 ± 13.4%.ConclusionIn this evaluation of ventricular arrhythmia treatment aiming for CRT optimization, both medical therapy and catheter ablation were shown to be effective. Compared to medical therapy, a higher increase in BiVP was observed after PVC ablation, and more patients improved in NYHA class.Clinical Trial RegistrationThe study was registered at clinical trials.org in August 2019: NCT04065893.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.