Abstract

Abstract This paper presents the experimental and numerical evaluation and comparison of the different flow fields downstream of a turbine center frame duct and a low-pressure turbine (LPT) stage, generated by varying the inlet flow conditions to the turbine center frame (TCF) duct. The measurements were carried out in an engine-representative two-stage two-spool test turbine facility at the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. The rig consists of a high-pressure turbine (HPT) and a LPT turbine stage, connected via a TCF with non-turning struts. Four individual high-pressure turbine purge flowrates and two low-pressure turbine purge flowrates were varied to achieve different engine-relevant TCF and LPT inlet flow conditions. The experimental data were acquired by means of five-hole-probe (5HP) area traverses upstream and downstream of the TCF and downstream of the LPT. A steady Reynolds-averaged Navier–Stokes (RANS) simulation taking all purge flows in account was used for comparison, and additional insights are gained from a numerical variation of the HPT and LPT purge flowrates. The focus of this study is on the impact of the variations in TCF inlet conditions on the secondary flow generation through the TCF duct and the carryover effects on the exit flow field and performance of the LPT stage. Existing work is limited by either investigating multistage LPT configurations with generally very few measurements behind the first stage or by not including relevant HPT secondary flow structures in setting up the LPT inflow conditions. This work addresses both of these shortcomings and presents new insight into the TCF and LPT aerodynamic behavior at varying the HPT and LPT purge flows. The results demonstrate the importance of the HPT flow structures and their evolution through the TCF duct for setting up the LPT inflow conditions and ultimately for assessing the performance of the first LPT stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.