Abstract

Fish oils (FOs) are rich in omega-3 long-chain polyunsaturated fatty acids, which have been purported to enhance recovery of muscular performance and reduce soreness post-exercise. However, the most effective FO dose for optimizing recovery remains unclear. The purpose of this investigation was to examine the effect of FO supplementation dosing on the recovery of measures of muscular performance, perceived soreness, and markers of muscle damage following a rigorous bout of eccentric exercise. Thirty-two college-aged resistance-trained males (~23.6 years, 71.6 kg, 172.1 cm) were supplemented with 2, 4, 6 g/day (G) FO or placebo (PL) for ~7.5 weeks. Following 7 weeks of supplementation, pre-exercise (PRE) performance assessments of vertical jump (VJ), knee extensor strength, 40-yard sprint, T-test agility, and perceived soreness were completed prior to a bout of muscle-damaging exercise and were repeated immediately post (IP), 1-, 2-, 4-, 24-, 48-, and 72-h (H) post-exercise. Repeated measures analysis of variance indicated a treatment × time interaction (p < 0.001) for VJ and perceived soreness, but no group differences were observed at any time point. VJ returned to PRE (54.8 ± 7.9 cm) by 1H (51.8 ± 6.5 cm, p = 0.112) for 6G, while no other groups returned to baseline until 48H. Lower soreness scores were observed in 6G compared to PL at 2H (mean difference [MD] = 2.74, p = 0.046), at 24H (MD: 3.45, p < 0.001), at 48H (MD = 4.45, p < 0.001), and at 72H (MD = 3.00, p = 0.003). Supplementation with 6G of FO optimized the recovery of jump performance and muscle soreness following a damaging bout of exercise.

Highlights

  • It is well known that exercise induces both mechanical and metabolic stress [1,2,3,4,5]

  • At immediately post (IP), vertical jump (VJ) height was significantly reduced for PL (−17.4 ± 6.0%, p < 0.001), 2G

  • IP, VJ height was reduced for2.8%, PL

Read more

Summary

Introduction

It is well known that exercise induces both mechanical and metabolic stress [1,2,3,4,5]. To facilitate faster recovery and maintain subsequent training session volumes, intensity, and performance, individuals who exercise and train employ a range of recovery strategies [14], including massage therapy [15], myofascial release [16], stretching [17], nonsteroidal anti-inflammatories [18], compression garments [19], and cryotherapy/cryostimulation [20], among others While these recovery strategies have been shown to be successful in alleviating some of the symptoms of skeletal muscle damage, nutritional strategies have been proposed to mitigate the negative effects that one may experience following a damaging/rigorous bout of exercise [21]. One dietary strategy that has garnered interest is consumption of omega-3

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.