Abstract

Increasing variability in precipitation patterns is expected to result from climate change in Canada. This effect has the potential to affect the performances of saturated covers in inhibiting acid rock drainage (ARD) and metal leaching (ML) processes. Because ARD and ML may cause the release of deleterious chemical species into the environment, such climate-change-driven impact was investigated using trickle leach columns. The physical, chemical, and mineralogical characteristics of the tailings as well as chemical composition of the leachate were measured before and after the column study. Results from the experiment showed that higher variability in precipitation regimes could enhance leaching of uranium. Leaching ranged from 67.1 to 90.1% of the total amount of U, with greater values associated with higher variability in precipitation patterns. Lower water levels and prolonged drought periods led to higher oxygen fluxes to the U tailings and dissolution of carbonate-bearing minerals. The release of carbonates could have enhanced uranium leaching through the formation of stable uranium-carbonate complexes in solution. Overall, this study shows that water level variation caused by varying precipitation patterns can significantly affect the drainage chemistry of saturated cover systems for which the level fluctuates freely near the tailings–cover interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call