Abstract
Effects of ambient and enhanced UV-B radiation (UVBR) on marine microbial plankton communities were assessed in a model ecosystem at Kristineberg Marine Research Station (KMRS) on the Swedish west coast. The system consisted of 16 aquaria (40 l) filled with surface seawater and semicontinuously run by replacing 10 l of their contents with filtered seawater twice a day. The aquaria were placed outdoors and the ambient solar radiation was reduced by 70% using neutral screens. Four different levels of UVBR were applied, each in 4 replicates: nothing, ambient, ambient +10% and ambient + 20%. The enhanced UVBR was supplied by fluorescent tubes whose intensity was modulated by the ambient radiation to give a constant percentage increase. Variables measured were nutrients (N, P, Si), composition of phytoplankton species and pigments, bacterial and primary productivity, and bacterial cell numbers. Statistically significant UVBR effects were found for carbon allocation, size distribution of primary productivity and phytoplankton species composition. It was also found that UVBR exposure during the development of the phytoplankton communities increased their sensitivity to UVBR in short-term carbon dioxide fixation measurements. We propose that this was due to an adaptation of the community to UVBR, including an increased production of compo- nents within the photosynthetic apparatus damaged by UVBR. The UVBR had no significant effect on the total biomass of phytoplankton and bacteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.