Abstract

Abstract The objective of this study was to investigate the effects of combined low-pressure ultraviolet (UV)irradiation and chlorination on the formation of disinfection by-products (DBPs) from different dissolved organic matter (DOM) as DBP precursors. Commercially available humic acid (HA), extracellular organic matter (EOM) from green algae, cyanobacteria, and diatom, namely Scenedesmus quadricauda (SQ), Merismopedia sp. (Msp), and Phaedactylum tricornutum (PT), were used as the sources of DOM. The DBP formation increased with increasing total residual chlorine; EOM from PT presented the highest formation potential followed by HA, Msp, and SQ. The low dosage of 40 mJ/cm2 UV irradiation is insignificant to change the DBP formation from HA and SQ; however, it decreased the DBP formation from bromide-containing EOM of PT and promoted the DBP formation from EOM of Msp at various total residual chlorines. The DBP formation of each DOM correlated well with total residual chlorine. The maximum DBP formation potential (DBPFP) reduction of 42.25 and 13.75% for haloacetic acid formation potential (HAAFP) and trihalomethane formation potential (THMFP) was obtained at the UV irradiation dosage of 300 mJ/cm2 for EOM of PT. However, for the EOM derived from Msp, a maximum increase of 58.1 and 51.1% for HAAFP and THMFP was observed after UV-chlorination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call