Abstract

Landscapes are becoming increasingly urbanized, causing loss and fragmentation of natural habitats, with potentially negative effects on biodiversity. Insects are among the organisms with the largest diversity in urbanized environments. Here, we sampled predator (Ampulicidae, Sphecidae and Crabronidae) and parasitoid (Tachinidae) flower-visiting insects in 36 sites in the city of Rome (Italy). Although the diversity of herbivorous insects in urban areas mostly depends on the availability of flowering plants and nesting sites, predators and parasitoids generally require a larger number of resources during their life cycle, and are expected to be particularly influenced by urbanization. As flower-visitors can easily move between habitat patches, the effect of urbanization was tested at multiple spatial scales (local, landscape and sub-regional). We found that urbanization influenced predator and parasitoid flower-visitors at all three spatial scales. At the local scale, streets and buildings negatively influenced evenness of predators and species richness and abundance of parasitoids probably acting as dispersal barrier. At the landscape scale, higher percentage of urban decreased predator abundance, while increasing their evenness, suggesting an increase in generalist and highly mobile species. Area and compactness (i.e. Contiguity index) of urban green interactively influenced predator communities, whereas evenness of parasitoids increased with increasing Contiguity index. At the sub-regional scale, species richness and abundance of predators increased with increasing distance from the city center. Compared to previous studies testing the effect of urbanization, we found little variation in species richness, abundance and evenness along our urbanization gradient. The current insect fauna has been probably selected for its tolerance to habitat loss and fragmentation, being the result of the intensive anthropogenic alteration occurred in the area in the last centuries. Conservation strategies aimed at predator and parasitoid flying insects have to take in account variables at multiple spatial-scales, as well as the complementarity of resources across the landscape.

Highlights

  • Rapid demographic and economic growth has led to increased urbanization and agricultural intensification [1,2,3]

  • Compared to previous studies testing the effect of urbanization, we found little variation in species richness, abundance and evenness along our urbanization gradient

  • Eight hundred sixteen predator and parasitoid insects were collected and identified to species level: 516 individuals (50 species) of sphecids (Ampulicidae, Sphecidae, Crabronidae), out of 380 species currently known from Italy [25], and 300 individuals (51 species) of tachinids (Tachinidae), out of 640 species currently known from Italy [44,53] (S3 Table)

Read more

Summary

Introduction

Rapid demographic and economic growth has led to increased urbanization and agricultural intensification [1,2,3]. Large areas of natural and semi-natural habitats have been extensively modified to make space for urban, industrial and agricultural areas. Half of the world’s population lives in cities [4], and this trend is rapidly increasing with potential negative effect on biodiversity. Semi-natural habitats are largely confined to public parks and private gardens, where most of the green spaces are fragments of highly disturbed habitat [1,2,4,5,9,12,13,14,15]. The reduction and fragmentation of remnant habitats can strongly influence communities inhabiting urban areas [5,16], usually with negative effects on biodiversity [2,17] and ecosystem functioning [14,18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call