Abstract

Climate change has severe consequences on ecosystem processes, as well as on people’s quality of life. It has been suggested that the loss of vegetation cover increases the land surface temperature (LST) due to modifications in biogeochemical patterns, generating a phenomenon known as “urban heat island” (UHI). The aim of this work was to analyze the effects of urban land-cover changes on the spatiotemporal variation of surface temperature in the tropical city of Mérida, Mexico. To find these effects we used both detected land-cover changes as well as variations of the Normalized Difference Vegetation Index (NDVI). Mérida is ranked worldwide as one of the best cities to live due to its quality of life. Data from satellite images of Landsat were analyzed to calculate land use change (LUC), LST, and NDVI. LST increased ca. 4 °C in the dry season and 3 °C in the wet season because of the LUC. In addition, a positive relationship between the LST and the NDVI was observed mainly in the dry season. The results confirm an increase in the LST as a consequence of the loss of vegetation cover, which favors the urban heat island phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.