Abstract

How to quantitatively characterise the impact of underground coal mining on the stability and slippage of loess slopes is a key problem in the evaluation of mining damage under loess slopes, but it is more difficult to study this problem under the impact of the particular mechanical properties and topographical features of loess slopes. In order to clarify the impact of underground coal seam mining on the stability and slippage of the loess slope, theoretical analysis, numerical simulation and physical similarity simulation experiments are used to address the problem based on the theory of slope stability and strata movement. The results show that the stability coefficient of a mining slope (Kms) is introduced to quantitatively characterise the stability of a mining loess slope, and to measure the degree of landslide risk. Due to the superposition of slope movement caused by mining subsidence and slope sliding tendency, the slope is more unstable when mining along the slope than when mining against the slope. The slope angle and slope height are the most important factors influencing the Kms. The ratio of rock stratum thickness to mining height and the ratio of rock stratum thickness to soil stratum thickness are positively correlated with Kms, and the correlation is relatively strong. The range of variation of the volume weight, internal friction angle and cohesion of the loess is small, and the influence on Kms is relatively weak. Probability integral theory is used to construct the relationship between stability and slippage of mining loess slopes. Taking the mining of a working face under the loess slope of Ningtiaota Coal Mine (China) as an example, the predicted results of the slope movement and deformation theory are in good agreement with the similar simulation test results, reaching 93.57~97.97%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call