Abstract

To investigate the impact of niosome nanoparticles carrying umbelliprenin (UMB), an anti-angiogenic and anti-inflammatory plant compound, on the expression of vascular endothelial growth factor (VEGF-A) and connective tissue growth factor (CTGF) genes in a human retinal pigment epithelium (RPE)-like retina-derived cell line. UMB-containing niosomes were created, optimized, and characterized. RPE-like cells were treated with free UMB and UMB-containing niosomes. The IC50 values of the treatments were determined using an MTT assay. Gene expression of VEGF-A and CTGF was evaluated using real-time polymerase chain reaction after RNA extraction and cDNA synthesis. Niosomes' characteristics, including drug entrapment efficiency, size, dispersion index, and zeta potential were assessed. Free UMB had an IC50 of 96.2 µg/mL, while UMB-containing niosomes had an IC50 of 25 µg/mL. Treatment with UMB-containing niosomes and free UMB resulted in a significant reduction in VEGF-A expression compared to control cells (P=0.001). Additionally, UMB-containing niosomes demonstrated a significant reduction in CTGF expression compared to control cells (P=0.05). However, there was no significant reduction in the expression of both genes in cells treated with free UMB. Both free UMB and niosome-encapsulated UMB inhibits VEGF-A and CTGF genes expression. However, the latter demonstrates significantly greater efficacy, potentially due to the lower UMB dosage and gradual delivery. These findings have implications for anti-angiogenesis therapeutic approaches targeting age-related macular degeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.