Abstract
This study deliberated the effect of ultrasonic treatment on collagen self-assembly behavior and collagen fibril gel properties. Bovine bone collagen I which had undergone ultrasonic treatment with different power (0-400 W) and duration (0-60 min) was analyzed. SDS-PAGE and spectroscopic analysis revealed that ultrasonic treatment decreased collagen molecular order degree and the number of hydrogen bonds, stretching collagen telopeptide regions while maintaining the integrity of the collagen triple-helical structure. Ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) dispersed the collagen aggregates more evenly, and accelerated collagen self-assembly rate with a decreased but more homogeneous fibril diameter (82.78 ± 16.47-115.52 ± 19.51 nm) and D-periodicity lengths (62.1 ± 2.9-66.5 ± 1.8 nm) than that of the untreated collagen (119.15 ± 27.89 nm; 66.5 ± 1.8 nm). Meanwhile, ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) decreased the viscoelasticity index and gel strength, enhancing thermal stability and promoting specific surface area and porosity of collagen fibril gels than that of the untreated collagen fibril gel. These results testified that collagen self-assembly behavior and collagen fibril gel properties can be regulated by ultrasonic treatment through multi-hierarchical structural alteration. This study provided a new approach for controlling in vitro collagen fibrillogenesis process so as to manufacture novel desirable collagen-based biomaterials with propitious performances for further valorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.