Abstract

PurposeThis article deals with producing ultra-diluted compounds (UHDs) prepared from Iranian calendula's characteristic and endemic species. It compares their chemical, biological and biochemical characteristics with the commercial sample of calendula species (grown in the Alps). In the following, these UHDs have been used to improve the quality of germination and growth and reduce contamination of rice (Oryza sativa) seeds in the laboratory environment. MethodsHigh-performance thin-layer chromatography (HPTLC) is used to isolate the active compounds. On the separated results, antioxidant and antibacterial were identified directly on the plate (Bio-autographic method). Direct on the plate)DESI mass spectrometry was used to identify the active compounds. ResultsThe HPTLC reveals that the chromatogram of native C. percica and C. officinalis extract is the most similar to the commercial compounds. The highest antioxidant activity is related to C. officinalis. The best antibacterial activity of the extracts against Staphylococcus aureus and Escherichia coli belongs to C. officinalis and C. tripterocarpa. Rutin, quercitrin, β-campstrole and di-o-caffeoylquinic acid, which are among the flavonoid and terpenoid categories were identified as active compounds. The prepared UHDs from native calendula are biologically more effective than the commercial ones in increasing seed germination efficiency, improving rooting quality and reducing contamination. ConclusionUsing UHDs increases the production of photosynthetic pigments the root length and the number of lateral roots. Also, the amount of protein, gibberellic acid and abscisic acid in seedlings treated using native UHDs of C. officinalis (native or commercial) is higher than the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.