Abstract

Climate has the most profound impact on the buildings' energy performance, especially now due to the ongoing global weather changes. Therefore, selecting appropriate weather data for building energy simulation is crucial. This paper aims to advance the knowledge about the use of different weather datasets for building performance simulation by addressing the following research objectives: (i) understanding the statistical relevance of using a typical weather year (TWY) for running building energy simulations, if compared to a series of actual weather years (AWY), for different buildings' typologies and under different climate conditions; (ii) verifying the role of building features on the discrepancies between TWY-based and AWY-based simulations. Tackling these objectives implied simulating a complex university building and a typical single-family dwelling by using two TWYs and ten AWYs pertaining to data recorded from 2010 to 2019 in both cold (i.e., Winnipeg, Canada) and warm (i.e., Catania, Italy) climates. Results show that in Winnipeg, TWYs predicted from 2.7% to 11.3% lower heating demand and from 10.5% to 82.4% higher cooling demand than the average long-term from AWYs, while in Catania TWYs predicted from 1.8% to 8.7% lower cooling demand and from 2.8% to 82.4% higher heating demand, suggesting that buildings designed using TWYs might not perform as modelled under actual weather conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.