Abstract

Numerical simulation results are presented for three turbulent jet diffusion flames, stabilized behind a bluff body (Sydney Flames HM1-3). Interaction between turbulence and combustion is modeled with the transported joint-scalar PDF approach. The focus of the study is on the impact of the quality of simulation results in physical space on the behavior of two micro-mixing models in composition space: the Euclidean Minimum Spanning Tree (‘EMST’) model and the modified Curl coalescence dispersion (‘CD’) model. Profiles of conditional means and variances of thermo-chemical quantities, conditioned on the mixture fraction, are discussed in the recirculation region and in the neck zone behind. The impact of the flow and mixing fields in physical space on the mixing model behavior in composition space is strong for the CD model and increases as the turbulence – chemistry interaction becomes stronger. The EMST conditional profiles, on the contrary, are hardly affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.