Abstract

Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.

Highlights

  • Turbocharger performance significantly affects the overall performance of turbocharged engines

  • Since the turbocharger rotational speed at engine start can be as low as 30000 rpm, it is concluded that thermal energy transfer to the compressor has tangible effect on engine volumetric efficiency during engine starting, no-load and part-load engine operation

  • At 60000 rpm, the non-adiabatic turbine power is about 55% of the power produced by an adiabatic turbine that operates at the same total-to-static enthalpy difference, rotational speed, and guide vanes position

Read more

Summary

Introduction

Turbocharger performance significantly affects the overall performance of turbocharged engines. Most of the previous publications concern with the amount of thermal energy exchange between the turbocharger components or even assume the turbocharger to be adiabatic These investigations are important for engine modeling programs. The present research investigates the probable effect of actual turbocharger non-adiabatic operation on engine volumetric efficiency and turbo lag. It models and estimates the actual turbine and compressor power under real non-adiabatic operating conditions. It explores the increase in compressed air temperature due to thermal energy transfer to the compressor and estimates its subsequent effect on engine volumetric efficiency

Test Rig and Measuring Technique
Turbocharger
Actual Compressor Power
Engine Volumetric Efficiency
Actual Turbine Power
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call