Abstract

Super Typhoon Saomai (2006, 08W), which caused historical disaster in the landfall region, is the most powerful typhoon ever making landfall in Mainland China since 1949. The impact of Tropical Storm Bopha (2006, 10W) on Saomai is regarded as a binary tropical cyclone (TC) interaction. In order to quantify the influence of Bopha on the intensity of Saomai, a set of numerical experiments are performed by artificially modifying the intensity of Bopha in its initial conditions. It is shown that changing the intensity of Bopha has significant effects on simulating Saomai’s intensities, structures, and tracks. We find that moisture transport is a pivotal process of binary TC interaction. It is interesting that there are opposite effects by Bopha at different development stages of Saomai. The existence of Bopha and increasing its intensity would weaken Saomai at its intensifying stage while intensifying Saomai at its weakening stage. A possible explanation of these effects is the direction change of moisture transport from/to Saomai at its intensifying/weakening stages through the channel. It may suggest a significant relevance for operational intensity forecasts under active binary TC interaction.

Highlights

  • Saomai began at 0000 UTC 4 August, 2006, as a tropical depression (tropical depression (TD): 10.8–17.1 m s−1; tropical storm (TS): 17.2–24.4 m s−1; typhoon (TY): 32.7–41.4 m s−1; super typhoon (STY): ≥51.0 m s−1) over the northwest Pacific Ocean

  • It intensified into a tropical storm at 0600 UTC 5 August and typhoon at 1200 UTC 6 August

  • The relationship between Super Typhoon Saomai and Tropical Storm Bopha is regarded as the binary TC (BTC) interaction

Read more

Summary

Introduction

TC intensity change interweaves multiscale nonlinear interactions among different physical processes and weather systems [1, 2] Such interactions include environmental moisture transport and binary TC (BTC) interaction. Goni, which locates at the upstream of the southwesterly flow to maintain Morakot moisture convergence, intercepted part of the water vapor transportation and weakened the moisture convergence to Morakot Their simulation results indicated that BTC interaction processes strongly affected the forecast of TC’s intensity.

Model Description and Experiment Design
Results
Conclusion and Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.