Abstract

Treated wastewater (TWW) reuse has increasingly been integrated in the planning and development of water resources in Tunisia. The present study aimed the evaluation of the environmental and health impact that would have the reuse of TWW for crops direct irrigation or for the recharge of the local aquifer in Korba (Tunisia). For this purpose water analyses were carried on the TWW intended for the aquifer recharge and on underground water of this area. As for underground water before recharge, no contamination by organic matter or heavy metals is shown but high salinity, nitrate, potassium and chloride concentrations are detected. The bacteriological analyses show the occurrence of faecal streptococcus, thermo-tolerant coliforms, total coliforms and E coli, but absence of salmonella. These results indicate that this water is not suitable for irrigation worse still for drinking purpose. The monitoring of TWW pollutants has demonstrated that oxygen demands (COD and BOD) do not exceed the Tunisian standards for TWW used in agriculture (NT 106.03) except for August when samples reach high values (COD = 139 mg O2 L − 1, BOD = 34). It is also the case for temperature, electrical conductivity (EC), salinity and pH. Heavy metal concentrations are under the detection limit. The determination of nutrients shows relatively low concentrations of nitrates, nitrites and orthophosphate (the maxima in mg L − 1 are respectively 6.6, 5.6 and 0.92) whereas the potassium levels are high (up to 48.8 mg L − 1) and the ammonia levels very high, reaching 60.6 mg L − 1. As for bacteriological pollution, while no salmonella and intestinal nematods are detected, high concentrations of total coliforms, thermo-tolerant coliforms, faecal streptococci and E. coli are analysed. Consequently, the better use of TWW in this region would be the use of infiltration basins for the recharge of the deteriorated aquifer by TWW. It would give the opportunity to better the quality of the TWW reaching the groundwater by an additional treatment for bacteriological and suspended solid (TSS) contaminants while being an alternative water for the aquifer recharge and a coastal barrier against seawater intrusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call