Abstract

The impact of transverse optical confinement on the static and spectral characteristics of 1.55 μm vertical-cavity surface-emitting lasers (WF-VCSEL) with a buried tunnel junction (BTJ) n++-InGaAs/p++-InGaAs/p++-InAlGaAs, implemented using molecular-beam epitaxy and wafer fusion. It was found that for VCSELs with a tunnel junction (TJ) etching depth of 15 nm, the single-mode lasing occurs up to 8 μm BTJ mesa size due to a relatively weak lateral optical confinement, while the effect of a saturable absorber (SA) appears when the BTJ mesa size is less than 7 μm. Enhancing lateral optical confinement by increasing the BTJ etching depth up to 20 nm leads to suppression of the SA effect at the BTJ mesa size of 5-6 μm, but simultaneously limits the maximum single-mode optical power. According to obtained results an increase in the spectral mismatch between the maximum of the gain spectrum of the active region and the resonance wavelength of the WF-VCSEL up to ~ 35-50 nm will make it possible to suppress the undesirable SA effect in a wide range of the BTJ mesa sizes maintaining the single-mode lasing. Keywords: vertical-cavity surface-emitting laser, wafer fusion, molecular beam epitaxy, single-mode operation, saturable absorber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.