Abstract
Remanufacturing has gained significant attention as a way to combat global warming and natural resource depletion due to its potential environmental and economic benefits. However, transportation and logistics activities in the reverse supply chain, a critical component of the closed-loop supply chains (CLSC), have been largely overlooked by both academics and businesses. This work aims to bridge the gap by mapping the impacts of transportation distances and costs on the environmental and economic performance of CLSC management. We develop a hybrid manufacturing–remanufacturing model under different reverse-channel structures and examine the relationships between transportation distances and costs, the remanufacturing rate, the optimal reverse channel, and the net emissions of the system. The results show that the optimal remanufacturing rate decreases with an increase in transportation distances of the reverse supply chain only, and forward distance has no impact on the remanufacturing rate. However, increasing market demand reduces the impacts of long reverse distances. Furthermore, the cost of transportation also affects the remanufacturing rate. We also found that increasing remanufacturing rate increases total emissions due to higher reverse transportation distances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.