Abstract

Zr–Mn doped spinel lithium ferrites Li0.5Fe2.5−2xZrxMnxO4 (0.0 ≤ x ≤ 0.5) are synthesized using the citrate precursor method. The spinel ferrite is formed at a relatively lower annealing temperature (873 K) compared to those synthesized by other conformist methods. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis are carried out to determine the cell parameters, crystallite size and grain growth. Cation distribution and site preferences for the doped ions are determined by Mössbauer spectroscopy at room temperature. The impact of doping of Li0.5Fe2.5O4 with the binary mixtures of transition metals (Mn, Zr) on hyperfine interaction parameters (δ, Δ and Hint), electrical resistivity (ρ), dielectric constant (έ) and dielectric loss tangent (tan δ) over the frequency range of 100 Hz to 3 MHz is discussed in details. Zr–Mn doping enhanced the DC electrical resistivity and decreased the loss tangent value which is considered useful for technological application in microwave and telecommunication devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.