Abstract
Wheat (Triticum aestivum) (ABD) and jointed goatgrass (Aegilops cylindrica) (CD) can cross and produce hybrids that can backcross to either parent. Such backcrosses can result in progeny with chromosomes and/or chromosome segments retained from wheat. Thus, a herbicide resistance gene could migrate from wheat to jointed goatgrass. In theory, the risk of gene migration from herbicide-resistant wheat to jointed goatgrass is more likely if the gene is located on the D genome and less likely if the gene is located on the A or B genome of wheat. BC1 populations (jointed goatgrass as a recurrent parent) were analyzed for chromosome numbers and transgene transmission rates under sprayed and non-sprayed conditions. Transgene retention in the non-sprayed BC1 generation for the A, B and D genomes was 84, 60 and 64% respectively. In the sprayed populations, the retention was 81, 59 and 74% respectively. The gene transmission rates were higher than the expected 50% or less under sprayed and non-sprayed conditions, possibly owing to meiotic chromosome restitution and/or chromosome non-disjunction. Such high transmission rates in the BC1 generation negates the benefits of gene placement for reducing the potential of gene migration from wheat to jointed goatgrass. © 2016 Society of Chemical Industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.