Abstract
This study evaluates the impact of biochar addition on the performance of anaerobic co-digestion of food waste (FW) and sewage sludge at different total solids (TS) contents (2.5 %, 5.0 %, and 7.5 %). Biochar co-digestion improved hydrolysis and acidogenesis by neutralizing volatile fatty acids (VFAs) reducing its inhibitions (2.6-fold removal), which elevated the soluble chemical oxygen demand (sCOD) degradation by 2.5 folds leading to a higher cumulative methane production compared to the control. This increase corresponded to an improvement of methane yields by ∼21 %−33 % (242–340 mL/gVSadd) at different TS contents. The biochar surface area offered substantial support for direct interspecies electron transfer (DIET) activity, and biofilm-mediated growth of methanogens i.e., Methanosarcina, Methanosata, and Methanobrevibacter. The biochar-enriched digestate improved the seed germination index, and bioavailability of plant nutrients such as N, P, K, and NH4+-N. This study reports an improved biochar-mediated anaerobic co-digestion for efficient and sustainable FW valorization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.