Abstract

Two approaches to top-surface nitridation of tunnel oxide, i.e., rapid thermal nitridation using NH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> anneal and decoupled plasma nitridation, are compared. Floating-gate MOS capacitors with source/drain were used to evaluate Flash memory performance and reliability. Tunnel-oxide NH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> anneal degrades postcycling retention performance compared to plasma nitridation for the same equivalent oxide thickness reduction. The poorer performance of NH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> anneal is related to higher N incorporation into SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> bulk rather than top surface. Postcycling memory erase-level shift and memory window (MW) closure is lower for plasma nitridation compared to NH <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> anneal. A new integration scheme using plasma nitridation followed by NO anneal produces the lowest MW closure with cycling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call