Abstract
The cultivation of ornamental horticultural crops under salinity stress has been a challenge for growers all over the world. In this study, an attempt was made for pot cultivation of Marigold (Tagetes erecta L. var. Pusa Basanti Gainda) in salt-stressed (SS) soil (150 mM) with the combined use of mushroom compost leachate (CL) and foliar application of titanium dioxide nanoparticles (TiO2-NPs). For this purpose, a total of six pot treatments, i.e., borewell water (BW; control), T1 (BW with SS), T2 (BW with SS and TiO2-NPs), T3 (CL supplemented), T4 (CL with SS), and T5 (CL with SS and TiO2-NPs) were conducted in triplicate. The results of this study showed that CL supplementation significantly (p < 0.05) improved the physicochemical i.e.,pH (14.5%), electrical conductivity (32.9%), total nitrogen (27.4%), total phosphorus (247.6%)), and nutrient (organic matter: 119.6%) profiles of soil which later helped in higher growth (30-35%) and yield (5.4-40.7%) of T. erecta. In CL-based treatments, the biochemical constituents were significantly (p < 0.05) higher than those in BW-irrigated ones. Also, the levels of selected stress defense enzymes were significantly increased under SS treatment but reduced under TiO2-NP application. Overall, it was observed that the combined application of CL and TiO2-NPs (T5 treatment) was the most helpful treatment for enhanced germination, growth, yield, biochemical parameters, and better plant enzymatic activities to cope with saline stress. This study provides a mechanistic understanding of T. erecta plants under saline stress which is crucial for the development of targeted interventions aimed at improving plant tolerance to saline conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.