Abstract

BackgroundIt is estimated that over 80% of respirable particulate matter (PM10) in cities comes from road transport and that tire and brake wear are responsible for the 3–7% emission of it. Data on the indicators of environmental impact of tire debris (TD), originated from the tire abrasion on roads, are extremely scarce, even though TD contains chemicals (zinc and organic compounds) which can be released in the environment.MethodsTD particle morphology was analysed with SEM, TEM and FIB instruments. TD eluates and TD organic extracts were tested at dilution series on human cell lines and Xenopus laevis embryos. 50 and 100 g/L TD were used for the eluates obtained after 24 h at pH 3 and the quantity of zinc present was measured with a ICP-AES. Eluates diluted to 1%, 10%, 50% in culture media and undiluted were used on X. laevis embryos in the FETAX test. HepG2 cells were exposed for 24 h to 0.05 – 50 μg/ml of zinc salt while A549 cells were exposed for 24, 48 and 72 h to 10, 50, 60, or 75 μg/ml of TD extract. X. laevis embryos were exposed to 50, 80, 100, or 120 μg/ml TD extract.ResultsThe solution of undiluted 50 g/L TD produced 80.2% mortality (p < 0.01) in X. laevis embryos and this toxic effect was three times greater than that produced by 100 g/L TD. Zn accumulation in HepG2 cells was evident after 4 h exposure. A549 cells exposed to TD organic extract for 72 h presented a modified morphology, a decrease in cell proliferation and an increase in DNA damage as shown by comet assay. The dose 80 μg/ml of TD extract produced 14.6% mortality in X. laevis embryos and 15.9% mortality at 120 μg/ml. Treatment with 80, 100, or 120 μg/ml TD organic extract increased from 14.8% to 37.8% malformed larvae percentages compared to 5.6% in the control.ConclusionSince the amount of Zn leached from TD is related to pH, aggregation of particles and elution process, the quantity of TD present in the environment has to be taken into account. Moreover the atmospheric conditions, which may deeply influence the particle properties, have to be considered. The TD organic fraction was toxic for cells and organisms. Thus, because of its chemical components, TD may have a potential environmental impact and has to be further investigated.

Highlights

  • It is estimated that over 80% of respirable particulate matter (PM10) in cities comes from road transport and that tire and brake wear are responsible for the 3–7% emission of it

  • PM10 [12,13], diesel exhaust particles (DEP) [14,15,16,17] and ultrafine particles [18,19] have received attention and been extensively analysed for their cytotoxicity, while the particulate deriving by tire abrasion on the road received a consideration limited to its impact on the soil, since it releases a large amount of zinc [20], and on the ambient air for its metal composition [21,22]

  • In this study tire debris (TD) has been investigated for its impact on human cell lines and on X. laevis embryos

Read more

Summary

Introduction

It is estimated that over 80% of respirable particulate matter (PM10) in cities comes from road transport and that tire and brake wear are responsible for the 3–7% emission of it. PM of urban areas is a complex mixture of organic and inorganic components [1]. PM10 [12,13], diesel exhaust particles (DEP) [14,15,16,17] and ultrafine particles [18,19] have received attention and been extensively analysed for their cytotoxicity, while the particulate deriving by tire abrasion on the road received a consideration limited to its impact on the soil, since it releases a large amount of zinc [20], and on the ambient air for its metal composition [21,22]. The presence of latex allergens in tire dust was suggested by Miguel et al [23], who outlined that this component could be an important factor in producing latex allergies and asthma symptoms

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call