Abstract
The effect of TiO2 nanostructures such as nanoparticles, nanowires, nanotubes on photoanode properties, and dye-sensitized solar cells photovoltaic parameters were studied. The series of dye-sensitized solar cells based on two dyes, that is, commercially N719 and synthesized 3,7′-bis(2-cyano-1-acrylic acid)-10-ethyl-phenothiazine were tested. Additionally, the devices containing a mixture of this sensitizer and chenodeoxycholic acid as co-adsorbent were fabricated. The amount of adsorbed dye molecules to TiO2 was evaluated. The prepared photoanodes with different TiO2 nanostructures were investigated using UV-Vis spectroscopy, optical, atomic force, and scanning electron microscopes. Photovoltaic response of constructed devices was examined based on current-voltage characteristics and electrochemical impedance spectroscopy measurements. It was found that the highest UV-Vis absorption exhibited the photoanode with nanotubes addition. This indicates the highest number of sensitizer molecules anchored to the titanium dioxide photoanode, which was subsequently confirmed by dye-loading tests. The highest power conversion efficiency was (6.97%) for solar cell containing nanotubes and a mixture of the dyes with a co-adsorbent.
Highlights
The second one denoted as alternating current (AC)-9 was synthesized as described in our previous work [51]
The series of dye-sensitized solar cells consisting of different TiO2 substrates, such as nanoparticles, nanoparticles with nanotubes, and nanoparticles with nanowires and dyes (N719, AC-9) were prepared
It is worth noting that the presence of nanowires made it difficult to adsorb dye molecules to the substrate, as shown by the UV-Vis tests
Summary
Received: 28 January 2021Accepted: 22 March 2021Published: 26 March 2021Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.Licensee MDPI, Basel, Switzerland.Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).Since the introduction by O’Regan and Grätzel in 1991, dye-sensitized solar cells (DSSCs) have been intensively investigated as promising candidates for next-generation solar cells because of their high photovoltaic performance, low production cost, and low environmental impact [1,2,3,4]. DSSCs are produced in fast, simple, and economical processes and their power conversion efficiency (PCE) reaches 14% [5,6,7,8]. Furthermore, DSSCs’
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.