Abstract

To quantify the impact of thoracic endovascular aortic repair (TEVAR) on radial aortic strain with the aim of elucidating stent-graft-induced stiffening and complications. Twenty fresh thoracic porcine aortas were connected to a mock circulatory loop driven by a centrifugal flow pump. A high-definition camera captured diameters at five different pressure levels (100, 120, 140, 160, and 180 mmHg), before and after TEVAR. Three oversizing groups were created: 0-9% ( n = 7), 10-19% ( n = 6), and 20-29% ( n = 6). Radial strain (or deformation) derived from diameter amplitude divided by baseline diameter at 100 mmHg. Uniaxial tensile testing evaluated Young's moduli of the specimens. Radial strain was reduced after TEVAR within the stented segment by 49.4 ± 24.0% ( P < 0.001). As result, a strain mismatch was observed between the stented segment and the proximal non-stented segment (7.0 ± 2.5% vs 11.8 ± 3.9%, P < 0.001), whereas the distal non-stented segment was unaffected ( P = 0.99). Stent-graft oversizing did not significantly affect the amount of strain reduction ( P = 0.30). Tensile testing showed that the thoracic aortas tended to be more elastic proximally than distally ( P = 0.11). TEVAR stiffened the thoracic aorta by 2-fold. Such segmental stiffening may diminish the Windkessel function considerably and might be associated with TEVAR-related complications, including stent-graft-induced dissection and aneurysmal dilatation. These data may have implications for future stent-graft design, in particular for TEVAR of the highly compliant proximal thoracic aorta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call