Abstract

BackgroundPathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment.ResultsWe found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions.ConclusionTo cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

Highlights

  • Pathogens are a major regulatory force for host populations, especially under stressful conditions

  • There was a significant difference between the survival of fish injected with phosphate buffered saline (PBS) medium and fish injected with the Vibrio sp. isolate (Table 1)

  • Even though we found evolutionary potential in both environments, the negative genetic correlation in pathogen resistance between thermal environments demonstrates that adaptation to current conditions can, in certain cases, be a weak predictor for performance in changing environments

Read more

Summary

Introduction

Pathogens are a major regulatory force for host populations, especially under stressful conditions. This can lead to a higher prevalence of epidemics during summer months These conditions apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, less known. Rising temperatures are likely to stress the host organism, thereby increasing host susceptibility to diseases [8,9] This applies to marine organisms [10], which are often highly vulnerable to climatic changes [11]. Thermal stress causes an alteration of the immune response, which generally results in a reduction of pathogen resistance [12] Despite these multifaceted effects, the specific interactions of increased thermal stress due to climatic warming with infectious diseases are sparsely explored, in marine ecosystems

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.