Abstract

Spherical Si solar cells were fabricated based on multicrystalline Si spheres produced by a dropping method. The thermal history of Si spheres were calculated by numerical simulation. The simulation result reveals that heat transfered by convection is greater than heat transfered by radiation. Considering the calculation results, Si spheres were dropped in the free-fall tower at low pressure state (0.2 × 10 5 − 0.5 × 10 5 Pa) to slow heat transfer by convection. After dash etching for 60 min, low pressure Si spheres have less etch pits, i.e., 80% for etch pit density and 8% for etch pit-area ratio compared to normal one. Furthermore, the conversion efficiency was improved from 6.57% (normal pressure spherical Si solar cell) to 9.56% (low one), which is 45% relative increase. The improvement is due to decrease of undercooling and increase of crystal growth duration. These results demonstrate that the dropping method at low pressure state is useful for fabricating high performance spherical Si solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.