Abstract

In the present work, the thermal contact resistance in a double fin-and-tube heat exchanger is investigated using multiphysics numerical approach. A three-dimensional (3D) Computational Fluid Dynamic (CFD) model is constructed in commercial software COMSOL Multiphysics® by coupling steady-state conjugate heat transfer and turbulent fluid flow. The impact of contact resistance at the fin and tube interface is analyzed by quantitatively evaluating the thermal-hydraulic characteristics. It is found that contact resistance of 3.3 × 106 Km2/W can reduce the overall performance by approximately 6% when compared without thermal resistance at the contact interface. The developed model can predict the effectiveness of the fin-and-tube heat exchanger design with or without thermal contact resistances. Furthermore, the model can be employed to improve the overall heat exchanger performance used in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.