Abstract

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity . The mixing length acts as a parameter which controls the turbulent part in . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic decreasing as in more general cases. Numerical experiments illustrate but also allow to extend these theoretical results: uniqueness is proved only for small enough while regular solutions are numerically obtained for any values of . A convergence theorem is proved for turbulent kinetic energy: as but for velocity we obtain only weaker results. Numerical results allow to conjecture that and as So we can conjecture that this classical turbulent model obtained with one degree of closure regularizes the solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.