Abstract
Cardiorespiratory coupling can be significantly influenced by both pontine and vagal modulation of medullary motor and premotor areas. We investigated influences of the pontine intertrigeminal region (ITR) and peripheral vagal pathways on the coupling between systolic blood pressure (SBP) and respiration in 9 anesthetized rats. Glutamate injection into the ITR perturbed both respiration and SBP and decreased SBP-respiratory coherence (0.95±0.01 vs 0.89±0.02; (p=0.01). Intravenous infusion of serotonin (5-HT) produced apnea and hypertension and also decreased SBP-respiratory coherence (0.95±0.01 vs 0.72±0.06; p=0.04). Bilateral vagotomy eliminated the cardiorespiratory coherence perturbations induced by central (glutamate injection into the ITR: 0.89±0.03 vs 0.86±0.03; p=0.63) and peripheral (5-HT infusion: 0.89±0.03 vs 0.88±0.02; p=0.98) pharmacologic manipulations. Glutamate stimulation of the ITR postvagotomy increased the relative spectral power density of SBP in the respiratory frequency range (0.25±0.08 vs 0.55±0.06; p=0.01). The data suggest that SBP-respiratory coupling is largely mediated within the central nervous system, with vagal systems acting in a way that disrupts coherence during transient cardiorespiratory disturbances. Although decreased cardiorespiratory coherence may increase cardiac work during perturbations, this may be physiologically advantageous in restoring homeostatic equilibrium of respiration and blood pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.