Abstract

Simple SummaryResearchers increasingly appreciate the tumor microenvironment (TME) for its role in the development and therapy resistance of cancers like esophageal adenocarcinoma. A better understanding of the TME fueling carcinogenesis is necessary for tailored prevention and therapies. Here, we highlight recent insights into tumor initiation, interactions with the immune system and possible novel preventative measures.Despite therapeutical advancements, and in contrast to other malignancies, esophageal adenocarcinoma (EAC) prognosis remains dismal while the incidence has markedly increased worldwide over the past decades. EAC is a malignancy of the distal esophageal squamous epithelium at the squamocolumnar junction with gastric cells expanding into the esophagus. Most EAC patients have a history of Barret’s esophagus (BE), a metaplastic adaption to chronic reflux, initially causing an inflammatory microenvironment. Thus, the immune system is highly involved early on in disease development and progression. Normally, anti-tumor immunity could prevent carcinogenesis but in rare cases BE still progresses over a dysplastic intermediate state to EAC. The inflammatory milieu during the initial esophagitis phase changes to a tolerogenic immune environment in BE, and back to pro-inflammatory conditions in dysplasia and finally to an immune-suppressive tumor microenvironment in EAC. Consequently, there is a huge interest in understanding the underpinnings that lead to the inflammation driven stepwise progression of the disease. Since knowledge about the constellations of the various involved cells and signaling molecules is currently fragmentary, a comprehensive description of these changes is needed, allowing better preventative measures, diagnosis, and novel therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.