Abstract

Wind tunnel tests for trains under large yaw angles are usually limited due to the width of the wind tunnel. Therefore, the leading car and a downstream dummy vehicle model are often employed instead of a real train, but there are no clear regulations regarding the shape of the end of the dummy vehicle. This paper studied the impact of the trailing edge shape of the downstream dummy vehicle on train aerodynamics subjected to crosswind based on the shear-stress-transport k-ω turbulence model of the delayed detached eddy simulation. Three types of end shapes, namely the rectangular end shape, the arc end shape, and the streamlined end shape were chosen for comparison, and the simulation results of the three-car-group train were selected as the benchmark. First, the reliability of the numerical method was validated by wind tunnel tests. Then, the aerodynamic coefficients under yaw angles of 0°–60° and the surface pressure distributions and flow structures around the train under the yaw angle of 60° of the head cars with different end shapes were compared and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.