Abstract

Cost-effective hydrocarbon production from low-permeability unconventional reservoirs requires multi-stage hydraulic fracturing (HF) operations. Each HF stage aims to generate the most spatially extended fracture network, giving access to the largest volume of reservoir possible (stimulated volume) and allowing hydrocarbons to flow towards the wellbore. The size of the stimulated volume, and therefore, the efficiency of any given HF stage, is governed by the rock’s deformational behaviour and presence of pre-existing natural fractures/faults. Naturally elevated pore pressures at depth not only help to reduce the injection energy required to generate hydraulic fractures but can also induce slip along pre-existing fractures/faults, and therefore, enhance production rates. Here we analyse borehole image, density, resistivity and sonic logs available from a vertical exploration well in the Goldwyer Shale Formation (Canning Basin) to (i) characterise the pre-existing network of natural fractures; and (ii) estimate the in-situ pore pressure and stress state at depth. The aim of such an analysis is to evaluate the possibility of fracture/fault reactivation (slip) during and following HF operations. Based on this analysis, we found that an increase in the formation's pore pressure by only a few MPa (typically ~5–10 MPa) could lead to slip along pre-existing fractures/faults, provided they are favourably oriented with respect to the prevalent stress field for future production. We also found that slip along the horizontal or sub-horizontal bedding of the Goldwyer Formation is unlikely in view of the prevalent strike-slip faulting regime, unless an extremely large overpressure exists within the reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call