Abstract

Soil moisture–atmosphere feedback effects play an important role in several regions of the globe. For some of these regions, soil moisture memory may contribute significantly to the state and temporal variation of the regional climate. Identifying those regions can help to improve predictability in seasonal to decadal climate forecasts. In order to accurately simulate soil moisture memory and associated soil moisture–atmosphere interactions, an adequate representation of soil hydrology is required. The present study investigates how different setups of a soil hydrology scheme affect soil moisture memory simulated by the global climate model of the Max Planck Institute for Meteorology, ECHAM6/JSBACH. First, the standard setup is applied in which soil water is represented by a single soil moisture reservoir corresponding to the root zone. Second, a new five layer soil hydrology scheme is introduced where not only the root zone is differentiated into several layers but also layers below are added. Here, three variants of the new scheme are utilized to analyse how different characteristics of the soil hydrology and the associated fluxes influence soil moisture memory. Soil moisture memory of the different setups is analysed from global ECHAM6/JSBACH simulations forced by observed SST. Areas are highlighted where the regional climate seems to be sensitive to the improved representation of soil hydrology in the new setup and its variants. Results indicate that soil moisture memory is generally enlarged in regions during the dry season where a soil moisture buffer is present below the root zone due to the 5-layer scheme. This effect is usually enhanced when this buffer is increased. Memory tends to be weakened (strengthened) where bare soil evaporation is increased (decreased), especially in semi-arid regions and wet seasons. For some areas, this effect is compensated by a decreased (increased) transpiration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.