Abstract

One of the problems of accidents in NPP with VVER is the evaporation of the primary coolant in the containment. Boric acid H3BO3 can ingress into the containment together with steam and crystallize, independently or in the form of salts, on heat-exchange and other surfaces of equipment placed in the containment, thereby lowering the efficiency of passive systems removing heat from the containment and the removal of hydrogen. The results of an experimental investigation of the deposition of insoluble aerosols and salts of boric acid on heat-exchange surfaces of the passive heat-removal system and the surfaces of autocatalytic hydrogen recombiners during serious accidents in NPP are reported. It is shown that the impact of crystallization of boric acid and its salts on the operability of these systems is very small.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.