Abstract

Potato plants are often exposed to biotic and abiotic stresses that negatively impact their growth, development, and yield. Plants respond to different stresses by inducing large numbers of stress-responsive genes, which can be either functional or regulatory genes. Among regulatory genes, Dehydration Responsive Element Binding (DREB) genes are considered as one of the main groups of transcriptional regulators. The overexpression of these factors in several transgenic plants leads to enhancement of abiotic stress tolerance. However, a number of reports showed that the overexpression of DREB factors under control of constitutive promoter, affects their morphology and production. Therefore, it becomes interesting to evaluate the effect of the overexpression of this StDREB1 transcription factor on plant growth, morphology, yield and tuber composition under both greenhouse and field culture conditions. To our knowledge, there is no available data on the effect of DREBA-4 overexpression on potato plants morphology and yield. Indeed, most studies focused on DREB genes from A-1 and A-2 groups for other plant species. Our results showed that StDREB1, a A-4 group of DREB gene from potato (Solanum tuberosum L.), overexpressing plants did not show any growth retardation. On the contrary, they seem to be more vigorous, and produced higher tuber weight in greenhouse and field culture than the wild type (WT) plants. Moreover, the overexpression of StDREB1 transcription factor seemed to have an effect on tuber quality in terms of dry matter, starch contents and reducing sugars in comparison to the WT tubers. These data suggest that the StDREB1 gene from A-4 group of DREB subfamily can be a good candidate in potato breeding for stress tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call