Abstract

Polymer‐fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton‐dissociation, charge‐separation, and charge‐recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side‐chains on the polymer‐fullerene packing in mixed regions. The focus is on poly‐benzo[1,2‐b:4,5‐b′]dithiophene‐thieno[3,4‐c]pyrrole‐4,6‐dione (PBDTTPD) as electron‐donating material and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as electron‐accepting material. Three polymer side‐chain patterns are considered: i) linear side‐chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side‐chains on BDT and a branched side‐chain on TPD; and iii) two branched side‐chains on BDT and a linear side‐chain on TPD. Increasing the number of branched side‐chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side‐chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton‐dissociation and charge‐recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar‐cell performance as a function of side‐chain patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.