Abstract

With the consumption of terrestrial metal resources, deep-sea polymetallic nodule minerals have been widely exploited around the world. Therefore, the environmental impact of deep-sea polymetallic nodule mining cannot be ignored. In this study, for the first time, a field disturbance and observation device, integrated with multiple sensors, is used to simulate the disturbance process of mining on seabed sediments in the polymetallic nodule area of the western Pacific Ocean at a depth of 5700 m. The impact of the process of stroking and lifting on the bottom sediment in the polymetallic nodule area is 30 times higher than that caused by the waves or the current. The time for turbidity to return to normal after the increase is about 30 min, and the influence distance of a disturbance to the bottom bed on turbidity is about 126 m. The time it takes for density to return to normal is about four hours, and the influence is about 1000 m. At the same time, the resuspension of the bottom sediment leads to an increase in density anomaly and salinity. Moreover, suspended sediments rich in metal ions may react with dissolved oxygen in water, resulting in a decrease in the dissolved oxygen content and an increase in ORP. During the observation period, the phenomenon of a deep-sea reciprocating current is found, which may cause the suspended sediment generated by the continuous operation of the mining vehicle to produce suspended sediment clouds in the water near the bottom of the mining area. This could lead to the continuous increase in nutrients in the water near the bottom of the mining area and the continuous reduction in dissolved oxygen, which will have a significant impact on the local ecological environment. Therefore, the way mining vehicles dig and wash in water bodies could have a marked impact on the marine environment. We suggest adopting the technology of suction and ore separation on mining ships, as well as bringing the separated sediment back to the land for comprehensive utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.