Abstract

The local oscillators (LOs) of the Soil Moisture and Ocean Salinity mission payload are used to shift the operating frequency of the 72 receivers to an optimal intermediate frequency needed for the signal processing. The LO temperature variations produce phase errors in the visibility, which result in a blurring of the reconstructed brightness temperature (Tb) image. At the end of the commissioning phase, it was decided to calibrate the LO every 10 min while waiting for a more in-depth analysis. During short periods of time, the LO calibration has been performed every 2 min to assess the impact of a higher calibration rate on the quality of the data. In this paper, by means of a decimation experiment, the relative errors of 6- and 10-min calibration interval data sets are estimated using the 2 min as a reference. A noticeable systematic across- and along-track pattern of amplitude ±0.3 K is observed for Tb differences between 10 and 2 min, whereas this is reduced between 6 and 2 min. A simulation experiment confirms that the nature of such systematic pattern is due to the visibility phase errors induced by the LO calibration rate. Such pattern is propagated into the sea surface salinity (SSS) retrievals. Overall, the SSS error increase (relative to the 2 min SSS data) is about 0.39 and 0.14 psu for the 10- and 6-min data sets, respectively. This paper shows that a LO calibration rate of at least 6 min would noticeably improve the SSS retrievals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.