Abstract

High precision real-time orbit of navigation satellites are usually predicted based on batch estimation solutions, which is highly dependent on the accuracy of the dynamic model. However, for the BDS satellites, the accuracy and reliability of the predicted orbit usually decrease due to the inaccurate dynamic model or orbit maneuvers. To improve this situation, the sequential estimation Square Root Information Filtering (SRIF) was applied to determine the real-time BDS orbits. In the filter algorithm, usually a long period is required for the orbit to converge to the final accuracy, due to lake of accurate initial state. This paper focuses on the impact of the initial state with different a priori Standard Deviation (STD) on the BDS orbit convergence performance in both normal and abnormal periods. For the normal period, the Ultra-Rapid (UR) orbit products and the Broadcast Ephemerides (BRDC) used as initial orbits are discussed respectively. For the abnormal period, orbit maneuver is analyzed. Experimental results show that a proper a priori STD of initial state can significantly accelerate the orbit convergence, while a loose a priori STD takes more than 10 h to converge in the radial direction for the BDS GEO/IGSO/MEO satellites. When the UR orbit product is used as the initial orbit, the orbit of the IGSO/MEO satellites can converge to decimeter-level immediately. When the BRDC product is used, the accuracy of meter-level can be obtained for the IGSO/MEO immediately, and converge to decimeter-level in about 6 h. For the period after the orbit maneuver, the real-time orbit accuracy can reach meter-level in about 6 h after the first group of broadcast ephemerides is received.

Highlights

  • The Global Navigation Satellite System (GNSS) aims at serving high-precision real-time positioning, navigation and timing applications

  • We mainly study the influence of the initial orbits (SRP and PV) with different a priori Standard Deviation (STD) σ(X0) on the convergence performance of BeiDou Satellite Navigation System (BDS) orbit determination

  • The results show that the influence of different a priori STD of Solar Radiation Pressure (SRP) and PV parameters in the along-track, cross-track, and radial direction using Broadcast Ephemerides (BRDC) as initial orbit is generally consistent with that using UR product

Read more

Summary

Introduction

The Global Navigation Satellite System (GNSS) aims at serving high-precision real-time positioning, navigation and timing applications. For the IGSO/MEO satellites, it is not possible to fit two orbit states with one set of SRP parameters due to the change of force model during the attitude scheme switching period between the yaw-steering and the orbit-normal mode, resulting in decreased orbit accuracy using the traditional LSQ method [17,18,19]. To overcome these problems and provide a stable real-time orbits and clocks products, one solution is adjusting both orbits and clocks in real time using the sequential estimation filter

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call