Abstract

In the higher vertebrate brain, the delicate balance between structural stabilization and remodeling of synaptic networks changes over the life span. The juvenile brain is characterized by high structural plasticity. A critical step in brain maturation is the occurrence of the extracellular matrix (ECM) that structurally stabilizes neuronal tissue restricting the potential for neuronal remodeling and regeneration. Current research has only begun to understand how this putative limitation of adult neuronal plasticity might impact on learning-related plasticity, lifelong memory reformation and higher cognitive functions. In this review, we summarize recent evidence that recognizes the ECM and its activity-dependent modulation as a key regulator of learning-related plasticity in the adult brain. Experimental modulation of the ECM in local neuronal circuits further opens short-term windows of activity-dependent reorganization, promoting complex forms of cognitive flexible adaptation of valuable behavioral options. This further bears implications for guided neuroplasticity with regenerative and therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.