Abstract

Cell-penetrating peptides (CPPs) are routinely used for the delivery of macromolecules into live human cells. To enter the cytosolic space of cells, CPPs typically permeabilize the membrane of endosomes. In turn, several approaches have been developed to increase the endosomal membrane permeation activity of CPPs so as to improve delivery efficiencies. The endocytic pathway is, however, important in maintaining cellular homeostasis, and understanding how endosomal permeation impacts cells is now critical to define the general utility of CPPs. Herein, we investigate how CPP-based delivery protocols affect the endocytic network. We detect that, in some cases, cell penetration induces the activation of Chmp1b, Galectin-3, and TFEB, which are components of endosomal repair, organelle clearance, and biogenesis pathways, respectively. We also detect that cellular delivery modulates endocytosis and endocytic proteolysis. Remarkably, a multimeric analogue of the prototypical CPP TAT permeabilizes endosomes efficiently without inducing membrane damage responses. These results challenge the notion that reagents that make endosomes leaky are generally toxic. Instead, our data indicates that it is possible to enter cells with minimal deleterious effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.