Abstract

In-house electrospun La0.6Sr0.4Co0.2Fe0.8O3–δ (LSCF) nanofibers have been tested through synchrotron x-ray diffraction and electrochemical impedance spectroscopy (EIS) in the 823–1173 K range, namely in the operating window of intermediate-temperature solid oxide fuel cells. Identical tests have been carried out on commercial LSCF powders, as a control sample. The results demonstrate that the electrospinning manufacturing procedure influences the crystalline properties of the perovskite. The rhombohedral structure (R), stable at room temperature, is retained by nanofibers throughout the whole temperature range, while a rhombohedral to cubic transition (R→C) is detected in powders at ⁓1023 K as a discontinuity in the rhombohedral angle α, accompanied by an abrupt change in oxygen occupation and microstrain. EIS data have a single trend in the nanofibers Arrhenius plot, and two different ones in powders, separated by a discontinuity at the structural transition temperature. Thus, a striking parallel is demonstrated between the variation with temperature of crystallographic features and electrochemical performance. Interestingly, this parallel is found for both nanofiber and granular electrodes. This opens up questions and new perspectives in attributing activation energies derived from EIS tests of LSCF materials to electrochemical processes and/or crystal structure variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.